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Dynamic Stochastic System Optimization

 There are four theoretical/computational approaches to the optimization of 

Markovian stochastic dynamical systems

• Discrete state and time dynamic programming using Bellman’s principle 

of optimality and forward or backward recursion or policy iteration

• Discrete state and time Markov chains using linear programming  

techniques pioneered by Howard

• Continuous state and time dynamic programming solving the Bellman  

PDE numerically

• Dynamic stochastic programming in discrete time using mathematical 

programming algorithms

 Of these only dynamic stochastic programming can handle an arbitrary

number of risk factors – the others are restricted to 3 or 4 – and DSP can 

relax the Markovian assumption practically
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Dynamic Stochastic Programming

 Dynamic stochastic programming is a means of solving dynamic 

stochastic optimization problems where future uncertainty is given by 

a large number of random processes and decisions have specified 

future timings

 General idea of dynamic stochastic programming

• Model future decisions as well as current ones to give a complete

forward plan to the planning horizon

• Incorporate many alternative futures in the form of simulated 

scenarios of the underlying risk factors against which decisions are 

robust

• Optimize all decisions simultaneously
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Financial Optimization Applications

Experience with a variety of actual applications including

 Equity and credit trading hedge fund strategies

 Long term asset allocation

 Asset liability management

 Derivative portfolio pricing and hedging strategies

 Risk management

 Capital allocation

 Real options evaluation

 Financially hedged logistics operations
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Some Current ALM Applications of DSP

 Pioneer Investments – guaranteed return products & DB 

pension schemes in the EU

 Allianz – property and casualty insurance globally

 Siemens – DB pension schemes in Germany & Austria

 Aon-Hewitt – DC pension schemes in the EU

 Freddie Mac – mortgage pool funding in the US

and many more ...
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Stochastic Optimization Technology



8

© 2017 Cambridge Systems Associates Limited

www.cambridge-systems.com

Dynamic Stochastic Programme

• Consider a financial planning problem formulated as a canonical linearly 
constrained dynamic stochastic programming (DSP) problem in recourse
form (boldface denotes random entities)
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Scenario Tree

Multi-level  Scenario Tree
Time period : decision stage of the problem

Each node : random event t conditioned on the past realizationt-1

• After taking action at stage t under uncertainty due to branching scenarios representing the 

realized values of the r.v. s make corrective actions (recourse) at the next stage of the tree

• This structural schema requires vector process simulation of branches conditionally from each 

node of  the tree

• Tree size in terms of nodes increases exponentially in the number of stages and linearly in the 

number of scenarios
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Scenario Generation

Alternative representations of possible futures

Distribution Problem/DFA                                2 Stage Problem                                           Multistage Problem
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Ten year out-of-sample scenario forecasts to 2010   1977-2000
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Dynamically Sampled Scenario Tree 
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Deterministic Equivalent
This leads to a large LP in the linear case where ωt ε W is a possible 

realization of the random vector ωt and corresponds to a node of the scenario 
(data path) tree   Dantzig & Madansky (1960)

Matrix size increases exponentially with the number of time stages and
linearly with the number of scenarios
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Market and Pricing Measures

 In asset liability management using DSP for liability driven 

investment (LDI) solutions requires the incorporation of long 

dated interest rate and inflation swaps in the  models

 The technical problem in incorporating such instruments into 

portfolio construction is the consistency of the data used to 

price them with that used to generate traditional instrument 

expected returns since the former requires the risk-neutral

(risk-discounted) or pricing probability measure Q while the 

latter requires the market (real-world) measure P
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Problem Generation and Solution Methods

 Deterministic equivalent of the stochastic program (SP) is 

convex but possibly nonlinear

 Approximation – very large sparse linear programming (LP) 

problem 

 Solution method depends on utility/risk function

• Downside-Quadratic:  nested Benders or CPLEX barrier 

interior point

• Exponential, Power/Log:  nested Benders

• Linear:  nested Benders or CPLEX barrier 
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Implementation

 Implement only the first period decision (portfolio)

 This implementable decision is robust against alternative scenarios 

including extremes

 Underlying dynamic economic scenario generator is updated at each 

portfolio rebalance
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Strategic Financial Planning
Gather Data

Statistical 
Analysis

of Data

Econometric 
Modelling

Monte Carlo

Simulation

Optimization 

Model

and

Fund Objectives 
and

Constraints

Market dataEconomic data

Model returns on investment classesLiabilities model

Investment class return forecastsLiability forecasts

Dynamic optimization model for assets-liabilities
Risk preferences

Investment horizon

Software generation of model + optimization

Investment Decisions

Visualization
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StochGen™

StochView™

StochLib™

Powered by Stochastics™

Visualisation of
data, problem

& results (Java library)

Simulation of
tree of future

scenarios (library)

Dynamic stochastic
programme optimizer
(DSP solver GNBS)

Dynamic 
stochastic
programme 
generator 

(DSP modelling 
language  GSPL)

Library of 
Stochastics™

components
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Fundamentals of the Stochastics™ System

 Simulation is crucial in the optimization process but

• difficult and complex for any application

• a separate problem to model building

• needs to concentrate only on key processes (others can be derived)

Input GUI

Simulation

Tree construction

Derived assets 

and processes

Model

GSPL

Solver

StochOpt

Output GUI

= Application  specific

parameters

key 

processes derived 

processes

scenario 

tree

problem 

formulation

results

STOCHASTICSTMStochGen
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Robust Long Term Yield Curve Modelling
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Yield Curve Model Applications

 Scenario simulation for predominantly long term asset 

liability management (ALM) problems in multiple currencies

 Valuation of complex structured derivatives and other 

products and portfolios with embedded derivatives in multiple 

currencies

 Risk assessment of portfolios and structured products
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Variety of Approaches to Yield Curve Modelling

 Investment bank pricing and hedging of fixed income products

• Short term current market data calibration

• Updated for re-hedging

• Evaluated by realized hedging P&L

 Central bank forecasts for monetary policy making

• Long term historical estimation for medium term forecasting

• Updated for next forecast

• Mainly evaluated by in-sample fit to historical data

 Consultants and fund managers advice for product pricing, investment 

advice and asset liability management over long horizons

• Long term historical calibration to market data often using filtering techniques

• Updated  for decision points

• Evaluated by consistency with out– of –sample market data: e. g. prices, returns
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Model Requirements

 Continuous time

 Mean reversion

 Dynamic evolution under both pricing (risk neutral) and market (real 

world) measures

 Wide range of yield curve shapes and dynamics reproduced (LIBOR)

 Realistic zero lower bound (ZLB) modelling

 Feasible and efficient discount bond price or yield calculation

 Parameter estimation by efficient model calibration to market data to 

multiple yield curves and currency exchange rates

 Parsimony in parameter specification

 Time homogeneity                           Dempster et al. (2010, 2014, 2015)
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Multi-factor Yield Curve Models

 Three broad overlapping classes

• Short rate models

• Heath-Jarrow-Morton models

• Market models

 Most rate variability  captured by 3 stochastic factors

Litterman & Scheinkman (1991)

 The 2 factor affine or quadratic short rate models are insufficient to reproduce the 

correlation structure of market rate changes but 3 to 5 factors suffice                            

Rebonato & Cooper (1995)     Nawalka & Rebonato (2011)

 The Nelson-Siegel (1987) 3-factor short rate model widely used by central banks has 

time inhomogeneous parameters and is neither parsimonious nor arbitrage free

 The Diebold-Rudebusch (2011, 2013) version of this model corrects both these faults 

Rebonato (2015)
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3 Factor Affine Short Rate Models

 The 3 factors under the pricing (risk-neutral) measure Q satisfy the              SDE

 Discount bond prices are given in affine form as

and the instantaneous short rate similarly as 

 Then bond prices and yields are given respectively by

and

 A 3 rate vector satisfies the Ricatti equation

Duffie & Kan (1996)     Dai & Singleton (2000)     Dempster et al. (2014)
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3 Factor Gaussian Extended Vasicek Model

 Specified under P by

 This Dai & Singleton              model with 16 parameters is not identified under P 

unless  Θ := 0 which is only appropriate to Q  and has other difficulties
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Economic Factor Model

 A 3 factor extended Vasicek Gaussian model specified under the market measure P by

 Its discretization is estimated  from CMS swap data with many observed yield curve 

points – rates – from 1 day (Libor) to 30 years (Treasury) using the EM algorithm 

which iterates Kalman filtering and maximum likelihood estimation to convergence

 Specifying the constant market prices of risk in terms of volatility units solves the  X & 

Y identification problem and setting them to zero generates the factor pricing process

 This workhorse model has been used for pricing complex products and ALM using 

daily to quarterly frequency data in US, UK , EU, Swiss and Japanese jurisdictions
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State Space Model Formulation

Transition Equation

Measurement Equation
Substantial number of observed yields (e.g. 14)

tyty
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Calibrating the EFM Model

 Given the vector of parameters θ this Gaussian extended Vasicek model has rates 

(zero coupon bond yields) for maturity τ := T- t  of the form 

 We interpolate the appropriate swap curve linearly to obtain swap rates at all 

maturities and then use 1, 3 and 6 month LIBOR rates and the swap curve to 

recursively back out a zero coupon bond yield curve  for each day from the basic swap 

pricing equation  Ron (2000)

 This gives the input data for model calibration to give the parameter estimates

 Calibration is accomplished using the EM algorithm which iterates successively  the 

Kalman filter (KF) and maximum likelihood estimation from an initial estimate

 At each iteration multi-extremal likelihood optimization in θ is accomplished using a 

global optimization technique followed by an approximate conjugate direction search 

 The procedure is run on a Dell 48 Intel core system using parallelization techniques 

and we have also investigated the use of cloud computing for these calculations

1( , ) [ ( , ) ( , ) ( , ) ( , )]t t ty t T A R B X C Y D           
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EFM Model EU Yield Curve Prediction 2003

Mean level of yields over 2003 for historical and

simulated weekly data

Weekly standard deviation of yields over 2003 for

historical and simulated data

Longer term out-of-sample yield curve prediction has recently been independently 

found to be superior to the arbitrage-free Nelson-Siegel  model of  Christensen, 

Diebold & Rudebusch (2011) widely used by central banks

Dempster, Medova & Villaverde (2010)
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Goodness of Fit to Historical Yield Curves
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Current Environment

 In all the world’s major economies low interest rates have prevailed since the 2007-

2008 financial crisis which were presaged by more than a decade in Japan

 This has posed a problem for the widespread use of diffusion based yield curve models 

for derivative and other structured product pricing and for forward rate simulation for 

systematic investment and asset liability management

 Sufficiently accurate for pricing and discounting in relatively high rate environments 

Gaussian models tend to produce an unacceptable proportion of negative forward rates 

at all maturities with Monte Carlo scenario simulation from initial conditions in low 

rate economies

 The implications for this question of negative nominal rates in deflationary regimes 

and the currently fashionable multi-curve models remain to be seen
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EFM Model Euro 10 Year Rate for 30 Years 
Quantiles based on 100,000 scenarios
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High Performance Computing Requirement

 Beginning with work in the Bank of Japan in the early 2000s there is currently

considerable research in universities, central banks and financial services firms to 

develop yield curve models whose simulation produces nonnegative rate scenarios

 All this work is based on a suggestion of  Fisher Black (1995) published posthumously 

to apply a call option payoff with zero strike to the model instantaneous short rate 

which leads to a piecewise nonlinearity in standard Gaussian affine yield curve model 

formulae for zero coupon (discount) bond prices and the corresponding yields and 

precludes their explicit closed form solution 

 As a result most of the published solutions to Black-corrected yield curve models are 

approximations and even these require high performance computing techniques for 

numerical solution  but we shall study here an obvious approximation which works 

extremely well as we shall see and is amenable to cloud computing for speed up
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Nonlinear 3-Factor Black Model

 In a posthumously published paper Fisher Black (1995) suggested correcting a priori a 

Gaussian short rate model for a shadow short rate r to give the actual short rate as

 Applied to an affine 3-factor Gaussian yield curve model such as that of JSZ or our 

EFM model this yields a hard nonlinear estimation problem  posed by the bond price 

Joslin, Singleton & Zhu (2011)

 Such models have been studied in the 2-factor case by the Bank of Japan and at 

Stanford but their discount bond pricing (rate) PDE methods do not easily extend to 3 

factors                    Ichuie & Ueno (2007)     Kim & Singleton (2011)                                  

Christensen & Rudebusch (2013)     Kim & Priebsch (2013)
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3-Factor Black Model Stylized Properties
------------------------------------------------------------------------------------------------------------------------------------- 

Stylized Fact Properties                                                   Yield Curve Model 

                                                                  CIR        BDFS     Vasicek      JSZ/HW   JSZ/HW/BRW   Black   

                                                                 3(3)A   3(3)A      3(3)A
         1(3)A

        0 (3)A
            0 (3)A

                             
 

Mean Reverting Rates                           Yes        Yes          Yes               Yes               No               Yes 

    

Nonnegative Rates                                 Yes         No           No                No                No               Yes 

       

Stochastic Rate Volatility                      Yes         Yes          No                No                No                Yes* 

        

Closed Form Bond Prices                       Yes         Yes          Yes               Yes               Yes               No        

Replicates All Observed Curves           No           Yes          Yes               Yes               Y es             Yes 

State Dependent Risk Premia               No           No            No               Yes              Yes              Yes 

Good for Long Term Simulations         No           No            No               No                No                Yes 

Slow Mean Reversion  Under Q           No           No            No               No                No                Yes 

+ve Rate/Volatility Correlation            No           No            No                No                No               Yes 

          

Effective in Low Rate Regimes              No           No            No                No                No              Yes 

          

Table 1.  Properties of evaluated yield curve models with regard to stylized facts       

*Rate volatilities are piecewise constant punctuated by random jumps to 0 at rate 0 boundary 

hitting points. 
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Black Model Calibration Progress

 Bonfim (2003) estimated his 2 factor model only on yields safely above 0

where the underlying shadow rate affine model rates and the Black rates 

agree, used the standard KF in the EM algorithm and solved the 2D 

parabolic quasilinear bond price PDE with finite differences

 Bauer & Rudebusch (2014) took the same approach to the 3 factor model 

employing the EKF in the EM algorithm and evaluated bond prices using 

500 path Monte Carlo simulation as do Lemke & Vladu (2014)

 Dempster et al. (2014) used least squares with 4 observed yields, QMLE 

and analytical approximation for short yields and 10,000 path Monte Carlo 

for longer maturity yields as noted above 

 We apply the Black correction to the measurement equation for yields within the 

unscented Kalman filter together with QMLE in the EM algorithm and EFM bond prices
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Black Model 10 Year Gilt Rate 

50 Year Predicted Distribution 2011-2061
Quantiles based on 10,000 scenarios

Source: Dempster et al. (2014)
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3 Factor Black Model Approaches

 The differences between current approaches to Black models based on 3 factor affine 

shadow rate models may be categorized in terms of handling the three steps crucial 

to the solution process 

 Method of inferring (3 factor) states from observed market rates

• inverse mapping or least squares

• extended or iterated extended Kalman filter (EKF or IEKF) with piecewise linearization

• unscented Kalman filter (UKF) with averaged multiple displaced KF paths

 Method of parameter estimation

• method of moments

• maximum likelihood (MLE) or quasi maximum likelihood (QMLE)

 Method of calculating bond prices or yields

• Monte Carlo simulation 

• PDE solution

• approximation
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Monte Carlo Bond Pricing

 Calibration of the nonlinear Black model with any underlying 3 factor 

Gaussian shadow rate model is more computationally intensive than for 

the underlying affine model

 Dempster, Evans & Medova (2014) use cloud facilities and Monte 

Carlo simulation with a JSZ 4 yield curve point model

 In more detail: 

• For short rates the closed form numerical rate calculations of Kim & Singleton 

(2011) are used 

• For long rates the averages of Monte Carlo forward simulated paths  -- which 

automatically take account of the convexity adjustment otherwise required for this 

model – are used

 With this approach filtering a multi-curve EFM model for OTC 

structured derivative valuation becomes very computationally intensive
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Unscented Kalman Filter Bond Pricing

 Here we calibrate the Black EFM model with our current EM algorithm approach using 

the (NAG) unscented Kalman filter  to handle the “hockey stick” nonlinearity 

Julier & Uhlmann (1997) 

 Working with yields directly as we do rather than bond prices computed or approximated 

numerically from integrals of the instantaneous short rate as in the references to Black 

model calibration previously cited significantly accelerates computation

 Putting the EFM 3-factor yield curve dynamics in state-space form shows that the factor

state dynamics remain linear Gaussian while the Black nonlinearity may be directly 

applied to each observed maturity market rate in the shadow rate affine measurement 

equation – longer maturity yields typically need no correction

 With this approach the 35 (34 sigma points plus original) duplicate KF calculations of the 

unscented Kalman filter averaged at each daily time step can be mindlessly parallelized

to handle the Black nonlinearity in essentially the same running time as the calibration of 

the underlying EFM model using basic linear Kalman filtering
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Parallelization Schema with MPI
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Data
• Combination of LIBOR data and fixed interest rate swap rates (the ISDA fix) 

for each of 4 currency areas (EUR, GBP, USD, JPY) to bootstrap the yield 

curve daily for 14 maturities:

3 month,  6 month, 1 year, 2 years, 3 years, 4 years, 5 years,                                        

6 years, 7 years,  8 years, 9 years, 10 years, 20 years, 30 years 

• In the case of the Swiss franc (CHF), only 12 maturities are available:  

3 month,  6 month, 1 year, 2 years, 3 years, 4 years, 5 years, 

6 years, 7 years, 8 years, 9 years, 10 years 

• Calibration periods used for these 5 currencies are the following:

EUR:  02.01.2001 to 02.01.2012

CHF:  02.01.2001 to 31.05.2013

GBP:  07.10.2008 to 31.05.2013 

USD:  02.01.2001 to 31.05.2013

JPY:   30.03.2009 to 31.05.2013

• The data was obtained from Bloomberg
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GBP          Date: 18 Feb 2013

Model RMSE

EFM 8 bp

Black EFM 5 bp
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Overall In-sample Goodness of Fit
Currency Observations Calibration log likelihood Sample fit RMSE (vol)

EUR 2817
EFM

232,652 15 bp

EFM UKF 252,500 17 bp

Black EFM  α:=0.0025 259,436 15 bp

CHF 3100

EFM 232,100 8 bp

EFM UKF 250,391 10 bp

Black EFM  α:=1.0 253,095 8 bp

GBP 1171

EFM 98,021 16 bp

EFM UKF 103,529 15 bp

Black EFM  α:=0.0001 105,368 14 bp

USD 3093

EFM 279,114 15 bp

EFM UKF 280,745 25 bp

Black EFM  α:=0.001 292,954 22 bp

JPY 950

EFM 91,014 6 bp

EFM UKF 84,564 28 bp

Black EFM  α:=0.006 102,544 6 bp
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Monte Carlo Out-of-sample Projection

30 Year Black EFM GBP 10 Year Rate

GBP 10 year rate forecast RMSE over 

20 months

Black median 0.48%

EFM median 0.45%

Quantiles based on 100,000 scenarios
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USD 10 Year Rate Out-of-sample Projections 

USD 10 year rate forecast RMSE over 21 months

Black median 0.39%

EFM median 0.43%
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Findings

 We have developed a Black-corrected version of our workhorse 3 factor 

affine Gaussian yield curve Economic Factor Model implemented using the 

unscented Kalman filter to handle the Black nonlinearity and HPC 

techniques

 Although this method generates an approximation to the full Black model its 

accuracy is comparable to and its computing run time only about twice that

of the basic EFM model – unlike all the alternatives published to date which 

are very heavily computationally intensive

 Using the NAG UKF algorithm (g13 ejc) with tuned α parameter setting 

both the in- and out-of-sample accuracy of the method exceeds that of the 

affine EFM model and it possesses much better dynamics

 Using the cloud we can reduce calibration times on big samples to minutes
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Pricing Variable Annuity Products
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GMAB VA Portfolio Fund Risk Management

 Consider an illustrative problem in which after initial client cash outlays 
no GMAB contributions are allowed

 Liabilities: nominal or index-linked guarantees

• Nominal guarantee: Fixed percentage of the initial wealth is 
guaranteed at a specified date  

• Inflation, equity – or other capital market index – linked guarantees

 Assets: EU bonds with maturity 1, 2, 3, 4, 5, 10 and 30 years and the 
Eurostoxx 50 index

 Transaction costs: At annual bond rollovers 
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Barrier Formulation - GMAB

 A premium of £100,000 is 

received from the client at 

the outset

 The maturity of the 

product is 10 years

 The guaranteed rollup rate 

R% (per annum) is fixed 

throughout the planning 

horizon and compounded 

monthly
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GMAB Annuity – 3% Guarantee

 The initial portfolio allocation is 
comprised entirely of AA bonds 
with 1-year maturity – a slightly 
more risky strategy due to AA 
credit risk

 Investment in equity and AA 
bonds is preferred between years 
1-3

 Portfolio diversification occurs 
between years 3-5

 Conservative strategy after 5 years

 Matching the 3% barrier is 
realistically possible
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Barrier Formulation - GMIB

 The product is split into 3 phases
 4-year accumulation phase

 2-year election period (fixed)

 4-year distribution phase

 A contribution of £10,000 is received from the 
policyholder on the first trading day of each year 
during the 4-year accumulation phase                   
(5 policyholder contributions in total)

 The total growth phase of the annuity is 6 years

 The guaranteed rollup rate R% (per annum) is 
fixed throughout the planning horizon and 
compounded monthly

 Guaranteed income payments are delivered to the 
policyholder during the 4-year distribution phase 
of the annuity. There are a total of 5 income 
payments to the policyholder
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GMIB Annuity – 2% Guarantee

 Initial portfolio comprises 
entirely of 1-year AA bonds

 Steady diversification over 
years 1-6 with good growth
during years 4-6

 Equity holding never exceeds 
20%

 Expected terminal profit of 
£3,640 net of charges 
amounting to a further £8,320 
relative to the £50,000 collected 
and dispersed over the ten year 
horizon
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GMIB Annuity – 3% Guarantee

 Initial portfolio comprises 
equity (12%) and 1-year AA 
bonds (88%)

 Higher equity holding during 
years 1-4 to track the liability 
barrier

 Steady diversification during 
years 4-6

 Expected terminal profit of 
£1,030 net of charges 
amounting to a further £8,210 
relative to the £50,000 collected 
and dispersed over the ten year 
horizon
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Other Variable Annuities

 Simple models for GMWB and GMDB

 More complex annuity products

• Longer maturities

• Variable interest rate structures

• Complex phase structures

 Barriers inflation-linked

 Incorporation of other factors such as policyholder age and 

dynamic/base lapses

 All complex products can be priced using this approach
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Unit Linked Guaranteed Product Fund 

Management
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Unit Linked GMIB VA Fund Management

• Case study based on 10 year development of management of 

a family of funds backing a variety of guaranteed return open 

ended investment products and maturities provided in several 

jurisdictions by a major financial institution

• Guarantees were absolute and relative to various indices

• Over time investors were moved from one fund to another 

more appropriate to their current age – life staging

• Here we will look at simplified closed end model to show the 

power of the technology
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Closed-End Guaranteed Return DC Fund

 After initial cash outlay no contributions are allowed

 Liabilities: nominal or index-linked guarantees

− Nominal guarantee: Fixed percentage of the initial wealth is guaranteed at 

a specified date  

− Inflation- or other capital market index linked guarantees

 Assets: EU bonds with maturity 1, 2, 3, 4, 5, 10 and 30 years and the Eurostoxx 

50 index

 Transactions costs: At annual bond rollovers

 At the decision times the zero coupon yield with maturity T is a proxy for the 

fixed coupon rate of a coupon-bearing bond with maturity T
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ALM Formulation

 Given a set of assets, a fixed planning horizon and a set of rebalance dates find the trading 
strategy that maximizes the risk-adjusted wealth and minimizes the shortfall below the PV 
of the guarantee subject to the constraints

 Scenario tree for the future assets returns

 Liability barrier at any time t on scenario w

 Economic three factor model is used for yield curve simulation      

Medova et al. (2006)  Dempster et al. (2010) Dempster et al. (2015)

          
 

 

 
    ,

0 0

,

1 1

where  is an ,   is the  of a 

which pays 1 at   with  ( )  at time  on  

t T t
T T T t

t t

t T

t

L W G Z W G e

G y

T Z t

annual guaranteed return yield zero - coupon bond 

maturity value scenario

y

 

    


 
 
     


  :

, ,

 max

         subject to the specific

d
portfolio bebalancing desicions

a A t T T

E wealth shortfall

 constraints



61

© 2017 Cambridge Systems Associates Limited

www.cambridge-systems.com

Scenario Generation

 Data : monthly (July 1997 – January 2003)

 Maximum likelihood estimation of the parameters of 

the stochastic process for Eurostoxx 50

 Recursive Kalman filter/ML estimation of the 

parameters for the yield curve

 Historical contemporaneous cross correlations

 Simulation of the conditional scenarios for Eurostoxx 

50 and EU treasury yields
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Graphical Representation  of Scenarios
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Liability Barrier for Long/Short Term Funds
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Historical Backtest 1999-2004

Comparison to Eurostoxx 50 Performance
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Model Predictions and Historical Performance 

Expected maximum shortfall for the 512.2.2.2.2 tree
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Portfolio Allocation

Expected maximum shortfall with monthly checking using the 512.2.2.2.2 tree

Longer bond maturities and smaller bond positions than other versions
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GBM with Poisson Jumps Equity Index Process 
Expected maximum shortfall with monthly checking using the 512.2.2.2.2 tree
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GBM with Poisson Jumps Equity Index Process

Portfolio Allocation

Expected maximum shortfall with monthly checking using the 512.2.2.2.2 tree

Solution takes advantage of decreased 2003 and 2004  volatility to increase stock holdings
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Conclusion
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Conclusions

 Dynamic stochastic programming is the paradigm for asset 
liability management which is also applicable to individual 
household lifetime financial planning

 Ability to perform cash flow based optimal dynamic asset 
liability management over very long term random horizons in
what-if mode

 Better idea of risks arising from future decisions – you can 
explicitly plan for them rather than adapting to outcomes as 
best you can as you go along myopically

 Demonstrably superior to current financial techniques in 
specific applications using sophisticated yield curve models
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